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The effect of an insoluble surfactant on the gravity-driven flow of a liquid film down
an inclined wall with periodic undulations or indentations is investigated in the limit
of vanishing Reynolds number. A perturbation analysis for walls with small-amplitude
sinusoidal corrugations reveals that the surfactant amplifies the deformation of the
film surface, though it also renders the film thickness more uniform over the inclined
surface. The effect of the surfactant is most significant when the film thickness is
less than half the wall period. To explain the deforming influence of the surfactant,
a linear stability analysis of film flow down an inclined plane is undertaken for
two-dimensional perturbations. The results reveal the occurrence of a Marangoni
normal mode whose rate of decay is lower than that of the single mode occurring
in the absence of surfactants. Numerical methods based on a combined boundary-
element/finite-volume method are implemented to compute flow down a periodic
wall with large-amplitude corrugations or semi-circular depressions. In the case of
a wavy wall, it is found that the shape of the film surface is described well by the
linear perturbation expansion for small and moderate wave amplitudes. Streamline
patterns reveal that, although the effect of the surfactant on the shape of the film
surface is generally small, Marangoni tractions may have a profound influence on the
kinematics by causing the onset of regions of recirculating flow.

1. Introduction
The gravity-driven flow of a liquid film down an uneven surface and the centrifugal-

driven flow of a liquid layer over a spinning substrate are of interest in a broad range
of engineering applications. In industrial practice, corrugated surfaces are used to
enhance the rate of heat and mass transport by inducing forced convection and
simultaneously generating a large surface area across which transport can take place.
Thin-film flows are encountered in the manufacturing of microelectronics components,
cathode ray tubes, active glass screens, computer disks and magnetic tapes, and are the
centrepiece of industrial and household painting and photographic emulsion coating
technology.

Laboratory and theoretical studies have shown that film flows are sensitive to the
substrate geometry, Reynolds number, and capillary number expressing the effect of
surface tension. Asymptotic and numerical solutions of the free-boundary problem
describing steady two-dimensional film flow down a wavy wall have been computed
by a variety of methods by Wang (1981, 1984), Pozrikidis (1988), Bontozoglou,
Kalliadasis & Karabelas (1991), Kang & Chen (1995), Trifonov (1998) and
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Malamataris & Bontozoglou (1999). Flow conditions investigated in these studies
range from creeping to potential flow, the latter approximating boundary-layer flow
with a flat outer velocity profile. Studies of film flow over a wall with two-dimensional
topography were conducted by Sukanek (1989), Stillwagon & Larson (1990), Peurrung
& Graves (1991), Schiltz (1995), and Kalliadasis, Bielarz & Homsy (2000) based on
the lubrication approximation, and by Pozrikidis (1988) and Mazouchi & Homsy
(2001) based on the unsimplified equations of Stokes flow. Laboratory investigations
have been presented by Zhao & Cerro (1992), Shetty & Cerro (1993, 1998), and more
recently by Vlachogiannis & Bontozoglou (2002).

Other studies have investigated film flow down a plane wall over a localized
irregularity, with the main goal of providing estimates for the intensity and spatial
decay of perturbations. Hansen (1986, 1991) computed free-surface profiles of two-
dimensional flow over a cylindrical singly-or doubly-humped protuberance and
illustrated the significance of the wall topography and the effect of surface tension.
Pritchard, Scott & Tavener (1992) and Abergel & Bona (1992) performed an asym-
ptotic analysis of the decay of localized perturbations, presented numerical solutions
of the lubrication equations describing thin-film flow, and compared the theoretical
predictions with laboratory observations. Pozrikidis & Thoroddsen (1991) and more
recently Lammers, O’Brien & Decrè (1997), Hayes, O’Brien & Lammers (2000) and
Decré & Baret (2003) investigated three-dimensional film flow over a cavity or small
particle attached to an inclined plane and described the film thickness non-uniformity.

Surfactants are known to play an important role in the structure and dynamics
of film flows in a variety of contexts. Their significance of the stability of film flow
down an inclined plane has been recognized and investigated by several authors, as
reviewed by Ji & Setterwall (1994). In previous studies of film flow down a corrugated
or imperfect wall, the effect of surfactants was overlooked and the surface tension was
assumed to be uniform over the film surface. The present study will demonstrate that
the presence of an insoluble surfactant may have a destabilizing influence in the sense
of promoting the film deformation in the limit of creeping flow. This curious finding
will be corroborated by a stability analysis of flow down a plane wall in the presence
of surfactants, revealing the existence of a Marangoni normal mode whose rate of
decay is lower than that of the normal mode arising in the absence of surfactants.
The theoretical predictions will be further confirmed by numerical computations
using the boundary-element method for finite-amplitude motions and arbitrary wall
geometries.

Frenkel & Halpern (2002) and Halpern & Frenkel (2003) discovered that the
presence of an insoluble surfactant in two-layer channel flow may induce a Marangoni
instability even under conditions of Stokes flow. Conversely, a stationary interface
populated with an insoluble surfactant may develop growing waves as soon as
a shear flow is imposed. Blyth & Pozrikidis (2003) confirmed the occurrence of
the unstable Marangoni normal mode and described the nonlinear stages of the
instability by numerical simulation. These recent findings provide direct evidence for
the destabilizing influence of a surfactant in an otherwise stable flow, consistent with
the conclusions of the present work.

2. Problem statement and governing equations
Consider the flow of a liquid film down a periodic wall with arbitrary geometry in

the presence of an insoluble surfactant, as illustrated in figure 1. We will assume that
the Reynolds number of the flow defined with respect to the film thickness or period
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Figure 1. Schematic illustration of film flow down an inclined periodic wall with
arbitrary geometry.

of the wall is so small that the motion of the fluid is governed by the linear equations
of Stokes flow including the Stokes equation and the continuity equation,

−∇p + µ∇2u + ρg = 0, ∇ · u = 0, (2.1)

where µ and ρ are the liquid viscosity and density, u = (ux, uy) is the velocity, p is
the pressure, and g is the acceleration due to gravity.

The velocity is required to satisfy the no-slip and no-penetration boundary
condition, u = 0 over the wall, and the traction f is required to satisfy the dynamic
boundary condition

f = σ · n = −(γ κ + pa)n − ∂γ

∂l
t, (2.2)

along the film surface, where σ is the Newtonian stress tensor, γ is the surface
tension, n is the unit normal vector pointing into the film, t is the unit tangential
vector pointing in the direction of increasing arclength l, pa is the ambient pressure,
and κ is the surface curvature in the (x, y)-plane reckoned to be positive when the
surface is downward parabolic, as illustrated in figure 1.

The surface tension γ is a function of the surfactant concentration Γ . The evolution
of the latter is governed by the convection–diffusion equation

dΓ

dt
+

∂(utΓ )

∂l
= −Γ κun + Ds

∂2Γ

∂l2
, (2.3)

where ut = u · t is the tangential velocity, un = −u · n is the outward normal velocity,
and Ds is the surfactant diffusivity (e.g. Li & Pozrikidis 1997; Pozrikidis 1998, 2001).
The derivative d/dt on the left-hand side of (2.3) expresses the rate of change of a
variable following the motion of interfacial marker points moving with the component
of the fluid velocity normal to the film surface. When the marker points also move
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tangentially to the film surface, an additional term appears on the right-hand side of
(2.3) (e.g. Li & Pozrikidis 1997; Yon & Pozrikidis 1998). In the case of steady flow,
the first terms on the left- and right-hand sides of (2.3) vanish, and the two surviving
terms express a balance between interfacial convection and diffusion.

When the surfactant concentration is below the saturation level, a linear relationship
may be assumed between the surface tension and the surfactant concentration
according to Gibbs, γc − γ = Γ RT , where R is the ideal gas constant, T is the
absolute temperature and γc is the surface tension of a clean interface that is devoid
of surfactants (e.g. Adamson 1990). Rearranging, we obtain the linear equation of
state

γ = γc

(
1 − β

Γ

Γ0

)
, (2.4)

where β = Γ0RT/γc is a dimensionless constant, related to the surface elasticity
employed in the surfactant literature by E = γcβ/Γ0, and Γ0 is a reference surfactant
concentration. More generally, the surface elasticity is defined as E = −∂γ /∂Γ . For
small variations in the surfactant concentration around the reference value Γ0, a
Taylor series expansion yields γ = γ0 − E(Γ − Γ0), where E = −(∂γ /∂Γ )Γ0

.

3. Small-amplitude sinusoidal undulations
Consider steady flow down a wall with small-amplitude sinusoidal corrugations

of period L, inclined at the angle θ0 with respect to the horizontal. In the inclined
system of coordinates depicted in figure 1, the wall geometry is described by the real
or imaginary part of the function

yw(x) = εheikx, (3.1)

where ε is a dimensionless coefficient whose magnitude is much less than unity, h is
the mean film thickness, i is the imaginary unit, and k = 2π/L is the wavenumber.
The location of the film surface is described by the corresponding function

ys(x) = h + εη(x) = h(1 + εAeikx), (3.2)

where A is the dimensionless complex surface amplitude, and η(x) = hAeikx is the
wave form of the perturbation. The distribution of the surfactant concentration and
surface tension along the film surface are described by the companion functions

Γ (x) = Γ (0) + εΓ (1)(x) = Γ0(1 + εCeikx),
(3.3)

γ (x) = γ (0) + εγ (1)(x) = γ0(1 + εDeikx),

where Γ (0) =Γ0 and γ (0) = γ0 are the uniform values corresponding to the flat-film
Nusselt flow, Γ (1) = Γ0Ceikx , γ (1) = γ0Deikx , and C, D are dimensionless complex
amplitudes. Since the perturbations are assumed small, we can write D = −Ma C,
where

Ma =
EΓ0

γ0

=
β

1 − β
, (3.4)

is the Marangoni number. The dimensionless coefficient β , applicable for dilute
surfactants, was defined in equation (2.4).

To describe the effect of the corrugations, we introduce the streamfunction ψ defined
by the equations ux = ∂ψ/∂y, uy = −∂ψ/∂x, and expand the velocity, streamfunction,
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and pressure in the perturbation series

u(x, y) = u(0)(x, y) + εu(1)(x, y) + . . . , ψ(x, y) = ψ (0)(x, y) + εψ (1)(x, y) + . . . ,

p(x, y) = p(0)(x, y) + εp(1)(x, y) + . . . .

}

(3.5)

The leading-order terms u(0), ψ (0) and p(0) correspond to the flat-film Nusselt solution,
and are given by

u(0)
x =

ρg sin θ0

2µ
y(2h − y), u(0)

y = 0, ψ (0) =
ρg sin θ0

2µ
y2

(
h − 1

3
y
)
,

p(0) = ρg cos θ0(h − y) + pa,


 (3.6)

where g = |g| is the magnitude of the acceleration due to gravity. Linearizing the
governing equations with respect to ε, we find that ψ (1)(x, y) is a biharmonic function,
∇4ψ (1) = 0. Setting ψ (1) = Ushf (ŷ) exp(ikx), where Us = u(0)

x (y = h) = ρgh2 sin θ0/(2µ) is
the Nusselt surface velocity and ŷ = y/h, we find

f (ŷ) = a1e
k̂ŷ + a2ŷek̂ŷ + a3e

−k̂ŷ + a4ŷe−k̂ŷ , (3.7)

where k̂ = kh, and ai , i = 1, . . . , 4, are four dimensionless complex coefficients. The
no-penetration and no-slip boundary conditions over the wall require, respectively,
f (0) = 0 and f ′(0) = −2, where a prime denotes a derivative with respect to ŷ.
Kinematic compatibility requires D(y − ys)/Dt =0, where D/Dt is the material
derivative; upon substitution, we find that the complex amplitude of the film surface
is related to the surface value of the perturbation streamfunction by A= −f (1).

The linearized form of the surfactant transport equation (2.3) in the general case
of unsteady flow is

∂Γ (1)

∂t
+ u(0)

x

∂Γ (1)

∂x
+ Γ (0)

(
∂u(1)

x

∂x
+

∂u(0)
x

∂y

dη

dx

)
= Ds

∂2Γ (1)

∂x2
, (3.8)

where all terms are evaluated at y = h (Frenkel & Halpern 2002; Halpern & Frenkel
2003). Note that the second term in the parentheses on the left-hand side of (3.8)
arises from the derivative ∂u(0)

x /∂l � (∂u(0)
x /∂y)(dys/dx) = ε(∂u(0)

x /∂y)(dη/dx). Because,
however, the shear stress and thus slope of the Nusselt velocity profile vanishes at
the film surface, this term does not make a contribution. On the contrary, in the
case of two-layer channel flow considered by Frenkel & Halpern (2002), Halpern &
Frenkel (2003) and Blyth & Pozrikidis (2003), the unperturbed interfacial shear stress
is generally non-zero. Substituting the preceding expressions into the steady-state
version of (3.8), we find that the complex amplitude of the surfactant concentration
is given by C = −f ′(1)/(1 − 2πi/Pe), where

Pe =
LUs

Ds

(3.9)

is the surfactant surface Péclet number. Correspondingly, the complex amplitude of
the surface tension is given by D = Ma f ′(1)/(1−2πi/Pe), where Ma is the Marangoni
number.

The tangential and normal components of the dynamic boundary condition (2.2)
at the film surface may be linearized in a standard way (e.g. Pozrikidis 1997,
pp. 466–472). The linearized normal component of the interfacial stress balance
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reads (
p(1)

)
y=h

= 2µ

(
∂u(1)

y

∂y

)
y=h

+ ρg cos θ0η(x) − γ (0) ∂
2η

∂x2
+ γ (1)κ (0). (3.10)

Note that, because the interface is flat in the unperturbed configuration, κ (0) = 0, the
last term on the right-hand side vanishes. Consequently, surface tension variations
do not affect the normal force balance. Differentiating (3.10) with respect to x and
using the tangential projection of the equation of motion to evaluate the pressure
derivative on the left-hand side, we obtain the preferred pressure-free form(

∂p(1)

∂x

)
y=h

= µ∇2u(1)
x = 2µ

(
∂2u(1)

y

∂x∂y

)
y=h

+ ρg cos θ0

∂η

∂x
− γ (0) ∂

3η

∂x3
. (3.11)

The complementary linearized tangential component of the interfacial force balance
reads

µ

(
∂u(1)

x

∂y
+

∂u(1)
y

∂x

)
y=h

= 2
µUs

h2
η +

∂γ (1)

∂x
. (3.12)

The last term on the right-hand side represents the effect of the Marangoni traction.
Compiling the two scalar wall conditions, the two scalar surface conditions and

equation D = Maf ′(1)/(1 − 2πi/Pe) derived after (3.9), we find a3 = −a1, and derive
the linear algebraic system M · z = q, where z = [a1, a2, a4, D]T and q = [−2, 0, 0, 0]T .
The coefficient matrix M is given by

M =




2k̂ 1 1 0

(1 − q)(k̂2 + 1) k̂2 + k̂ + 1 q(k̂2 − k̂ + 1) − 2π2i

Ca k̂
e−k̂

k̂2(1 + q) − iτ (1 − q) k̂2 − iτ −q(k̂2 + iτ ) 0

Ma k̂(1 + q) Ma(1 + k̂) Ma q(1 − k̂) −
(

1 − 2πi

Pe

)
e−k̂




, (3.13)

where q ≡ exp(−2k̂),

τ ≡ cot θ0 +
2π2

Ca
, (3.14)

and

Ca ≡ µUs

γ0

(
L

h

)2

=
ρg sin θ0L

2

2γ0

(3.15)

is the capillary number expressing the magnitude of viscous stresses, µUs/h, relative
to the capillary pressure, hγ0/L

2. Note that, in estimating the capillary pressure, the
surface curvature has been scaled with h/L2.

Five dimensionless parameters are involved in the matrix M, including k̂, θ0, Ca,
Ma and Pe. When the Marangoni number vanishes, the coefficient D becomes
indeterminate, and only the first three equations involving the dimensionless group
τ , but not Ca alone, are relevant to the dynamics. Following accepted practice, we
introduce the property group

α =
γ0L

µDs

, (3.16)
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Figure 2. Predictions of linear theory for a sinusoidal wall in the absence of surfactants:
effect of film thickness on the magnitude (solid lines) and phase shift of the surface wave with
respect to the wall (dashed lines), for Ca= ∞ (heavy lines), 5, 2, 1, 0.5, 0.2 and 0.1. The in-
clination angle is (a) θ0 = π/20, (b) π/4; in both cases, the phase shift has been reduced by π/2.

expressing the significance of the surfactant diffusivity, and relate the capillary number
to the Péclet number and vice versa by

Ca =
Pe

α

(
L

h

)2

, Pe = αCa

(
h

L

)2

. (3.17)

The flow may then be studied as a function of h/L, θ0, Ca expressing the significance
of the surface tension, β or Ma expressing the sensitivity of the surface tension on
the surfactant concentration, and α.

The perturbation expansion of Wang (1981) demonstrated the effect of h/L and
Ca on the deformation of the free surface in the absence of surfactants, that is,
for β = 0 or Ma = 0. His analysis was conducted working in an alternative system of
coordinates, and results were presented with respect to a different set of dimensionless
parameters. By way of establishing a point of reference for demonstrating the effect of
surfactants, in figure 2 we illustrate the dependence of the magnitude and phase shift
of the surface wave on film thickness for wall inclination angles θ0 = π/20 and π/4.
In these graphs, the phase shift expressed by −Arg(A) has been reduced by π/2. The
results show that, as the film thickness tends to zero, the film surface tends to conform
with the wall, and thus the film thickness tends to become more uniform. On the other
hand, as the film becomes thicker, the amplitude of the free surface decreases and
effectively vanishes when h/L = 1. Surface tension has a strong influence on both the
amplitude and phase shift of the surface deformation. As the wall tends to become
horizontal, the magnitude |A| drops to zero increasingly closer to the origin of the
h/L axis, and the phase shift drops to −π/2 in the way of the Heaviside step function.

When the capillary number is large, surface tension plays only a minor role and the
surfactant is irrelevant insofar as determining the shape of the film surface. Figure 3
illustrates the effect of a surfactant with low diffusivity, α = 100, under conditions
where viscous and capillary stresses are comparable, Ca =2, over a broad range of
values of the surfactant sensitivity parameter β . The results on the surface wave
presented in figure 3(a) reveal that the surfactant acts to increase the amplitude of the
surface deformation represented by the solid lines, and the effect is most pronounced
at low and moderate film thicknesses, h/L < 0.3. Moreover, the surfactant acts to
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Figure 3. Predictions of linear theory for a sinusoidal wall in the presence of surfactants:
effect of film thickness on the magnitude (solid lines) and phase shift with respect to the wall
(dashed lines), of (a) the film surface wave, and (b) surfactant concentration wave, for θ0 = π/4,
Ca=2, α = 100 and β = 0 (heavy lines), 0.1, 0.2, . . . , 0.90. In both graphs, the phase shift has
been reduced by π/2.

decrease the phase shift of the surface deformation with respect to the wall represented
by the dashed lines, and thereby renders the film thickness more uniform over the
corrugations.

The solid lines in figure 3(b) illustrate the behaviour of the surfactant concentration
wave, showing that the amplitude of the perturbation represented by the solid lines
reaches a maximum at a certain value of h/L that strongly depends on the sensitivity
parameter β . That the amplitude of the surfactant concentration tends to zero
as the film becomes thicker, h/L → ∞, is expected on the observation that the
disturbance flow decays at an exponential rate far from the wall, as can be deduced by
inspection of the periodic Green’s function of two-dimensional Stokes flow (Pozrikidis
1988). In the opposite limit where the film thickness tends to vanish, the tangential
velocity and thus the surfactant concentration tend to become uniform along the film
surface.

The dashed lines in figure 3(b) show that the phase shift of the surfactant
concentration lies in the range (π/2, π) and reaches a peak at some point between
the maximum downward wall slope and immediate trough. If the sinusoidal wall is
described by the shape function yw(x) = εh cos(2πx/L), then the peak occurs in the
interval L/4 < x < L/2. This behaviour can be deduced by referring to equation (2.3),
and observing that at steady and in the limit of low surfactant diffusivity, only the
second term on the left-hand side survives. Integrating with respect to arclength shows
that the perturbation in the surfactant concentration is inversely proportional to the
tangential surface velocity, which is higher along the downward slope of the wall.

Behaviour similar to that illustrated in figure 3 is observed for different inclination
angles. In all cases, the surfactant promotes the surface deformation but also tends
to render the film thickness more uniform over the corrugations by reducing the
phase shift. When the property group α is lowered to values of the order of unity,
surface diffusion dominates and the effect of the surfactants becomes insignificant.
For example, when θ0 = π/4, h/L = 0.10 and Ca = 2, the amplitude of the film surface
is |A| =0.423 in the absence of surfactants, |A| =0.430 for α = 1 and β =0.5, and
|A| =0.582 for α =100 and β = 0.5.
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4. Stability of flow down an inclined plane and over a horizontal wall
The linear analysis of § 3 has revealed that surfactants promote the deformation

of the film surface in steady flow. However, this does not necessarily imply that
surfactants also have a destabilizing influence on the evolution of surface waves in
unsteady flow. In fact, previous analysis and laboratory observations for film flow
down an inclined plane have provided evidence to the contrary, by demonstrating
that adding surfactants raises the critical Reynolds number (film thickness) above
which surface waves begin to grow.

To resolve the issue of stability, we consider the evolution of infinitesimal
perturbations in the context of Stokes flow. The mathematical formulation of the
linear stability problem for flow down a wavy wall involves lengthy derivations that
are beyond the scope of the present work (Wei & Rumschitzki 2002). For simplicity
then, we confine our attention to flow down an inclined plane wall or over a horizontal
wall, but note that the restriction on the planar geometry is not as restrictive as it
might appear. Tougou (1978) found that small-amplitude wall corrugations do not
affect the stability of long waves.

4.1. Flow down an inclined wall

To carry out the normal-mode stability analysis for two-dimensional perturbations,
we describe the position of the film surface by the function ys(x, t) = h + εη(x, t),
where ε is a small dimensionless coefficient, η(x, t) = hA exp[i(kx − σ t)]), A is an
arbitrary dimensionless coefficient, and σ is the complex growth rate of a normal
mode. The perturbation streamfunction, surfactant concentration, and surface tension
are expressed in the corresponding forms


ψ (1)

Γ (1)

γ (1)


 =




Ushf (ŷ)

Γ0C

γ0D


 × exp[i(kx − σ t)], (4.1)

where ŷ ≡ y/h, and the function f (ŷ) is given in (3.7). Kinematic compatibility
requires A= −f (1)/ζ , where ζ =1 − ĉ, ĉ ≡ c/Us and c = σ/k is the complex phase
velocity. Next, we introduce the wall and film surface conditions and find a3 = −a1.
The remaining complex coefficients satisfy the homogeneous linear system N · z = 0,
where z = [a1, a2, a4, D]T , and the coefficient matrix is given by

N =




2k̂ 1 1 0

(1 − q)(ζ k̂2 + 1) ζ k̂2 + ζ k̂ + 1 q(ζ k̂2 − ζ k̂ + 1) −ζ
2π2i

Ca k̂
e−k̂

ζ k̂2(1 + q) − iτ (1 − q) ζ k̂2 − iτ −q(ζ k̂2 + iτ ) 0

Ma k̂(1 + q) Ma(1 + k̂) Ma q(1 − k̂) −
(

ζ − 2πi

Pe

)
e−k̂




.

(4.2)

As in § 3, k̂ ≡ kh, q ≡ exp(−2k̂), and the dimensionless groups τ , Ca and Pe are defined
in (3.14), (3.15) and (3.9). Six dimensionless parameters are involved in the matrix N,
including k̂, ζ , θ0, Ca, Ma and Pe. Note that the matrix M defined in (3.13) arises from
N by substituting c =0 or ζ = 1, corresponding to a stationary film surface. Setting the
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Figure 4. Dimensionless growth rate s of surface waves for flow down a plane wall inclined
at an angle θ0 = π/4, Ca=2, α =100 and β = 0.001 (heavy solid and broken lines), 0.1,
0.2, . . . , 0.9. The broken lines represent the first normal mode, and the solid lines represent
the second normal mode. The hardly visible dotted line represents Yih’s mode applicable in
the absence of surfactants.

determinant of N equal to zero provides us with a third-order algebraic equation for
the computation of the reduced and shifted complex phase velocity ζ . One trivial root
is given by ζ = 0 corresponding to c = Us , and the other two roots may be computed
in terms of the coefficients of the remainder binomial using the quadratic formula. In
practice, the coefficients are extracted by solving a system of complex linear equations
for three trial values of ζ . Thus, in the presence of surfactants, the flow admits two
normal modes.

In the absence of surfactants, β =0 or Ma = 0, the coefficient D becomes
indeterminate, and only the first three equations in (4.2) involving the dimensionless
group τ , but not Ca alone, are relevant to the dynamics. Yih (1963) derived analytical
expressions for the phase velocity cR and rate of decay of surface waves σI = kcI ,
where the subscripts R and I denote the real and imaginary part. The dimensionless
phase velocity, v ≡ cR/Us , and dimensionless growth rate, s ≡ σIh/Us = cI k̂/Us , are
given by

v = 1 +
1

cosh2 k̂ + k̂2
, s = − τ

2k̂

sinh(2k̂) − 2k̂

cosh2 k̂ + k̂2
. (4.3)

Since the fraction on the right-hand side of the expression for the growth rate is
positive for any k̂, the growth rate is negative, and the flow is stable.

Figure 4 displays the dimensionless growth rate s of the two normal modes for
θ = π/4, Ca = 2, α = 100 and a range of values of β . The dotted line interwoven
with the right-hand portion of the dashed line represents Yih’s analytical prediction
given in the second equation of (4.3), corresponding to β = 0. The results reveal that,
as soon as β becomes non-zero, Yih’s function splits into two parts at the critical
point k̂c � 0.672. Two branches corresponding to the two normal modes then arise
from the simultaneous splitting of the function s =ϕ(k̂) = −2πk̂/Pe= −8π3/(αCak̂)
corresponding to the last element of the matrix N. Because the growth rate of the first
normal mode described by the dashed lines is lower than that of the Yih mode for
any wavenumber, the surfactant has a stabilizing influence. In contrast, because the
growth rate of the second mode described by the solid lines is higher than that of the
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Figure 5. (a) Dimensionless growth rate s of surface waves for θ0 = π/4, Ca′ = 2, α′ = 100 and
β = 0.001 (heavy solid and broken lines), 0.1, 0.2, . . . , 0.9. The dotted lines represent the
asymptotic form of the Marangoni mode. (b) Magnified view for α = 0.5 showing the switching
of branches of the two normal modes.

Yih mode for any wavenumber, the surfactant has a competing or complementary
destabilizing influence. However, it should be emphasized that the growth rates along
this branch are negative and the flow is stable.

A further feature of figure 4 is that the graphs of the second mode pass through
a pivot point that is located on the graph of the function s =ϕ(k̂) at the position
k̂p = 0.9362, correct to shown accuracy, with no apparent significance on the behaviour
of the first normal mode. Numerical investigation showed that the precise position of
the pivot point depends on θ0, Ca and α. Accordingly, locally near k̂p , the linearized
equation determining the growth rate of the second normal mode takes the form
s = f0(θ0, Ca, α)+ (k̂ − k̂p)f1(θ0, Ca, α, β)+ . . . , where f0 = ϕ(k̂p). Note the absence of
β from the arguments of f0. Mathematically, the imaginary part of the last element
of the matrix N vanishes at the pivot point, screening out the Marangoni number
that appears only in the last row. Physically, if the wavelength L is kept constant
while the film thickness h is increased from values below k̂p or decreased from values

above k̂p , there will be a critical thickness corresponding to k̂p where the effect of the
surfactant will be independent of β or Ma.

Now, because the present analysis was motivated by the problem of film flow down
a wavy wall discussed in § 3, the capillary number Ca and property group α have been
defined using as characteristic length the wavelength L. In considering flow down a
plane wall from the viewpoint of hydrodynamic stability, it is appropriate to redefine
these dimensionless groups in terms of the mean film thickness, as

Ca′ =
µUs

γ0

= Ca

(
h

L

)2

, α′ =
γ0h

µDs

= α

(
h

L

)
. (4.4)

Moreover, the growth rate can be reduced with respect to the capillary time scale,
γ0/µh to give the alternative dimensionless growth rate s ′ ≡ σIµh/γ0 = cIµk̂/γ0, which
is related to s by s ′ = sCa′. Figure 5(a) shows graphs of the dimensionless growth
rate s for θ0 = π/4, Ca′ = 2, α′ = 100 and a range of values of β . The dashed lines
correspond to the first normal mode and the solid lines correspond to the second
normal mode.
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Figure 6. Decay of surface waves in film flow down a plane wall inclined at an angle θ0 = π/4,
for h/L = 0.10, Ca= 2, β = 0.25 and α = 100. The heavy solid and dashed lines correspond to
the two normal modes, the dotted lines represent the predictions of the linear stability theory,
and the intermediate line corresponds to an arbitrary initial condition.

In the limit as k̂ tends to infinity while Ca′ is held constant, the growth rate of the
Yih mode behaves like

s � −τ

k̂
� − k̂

2 Ca′ or s ′ � − k̂

2
, (4.5)

whereas the growth rate of the complementary Marangoni mode behaves like

s � − k̂

Ca′

(
k̂

α′ +
Ma

2

)
or s ′ � −k̂

(
k̂

α′ +
Ma

2

)
. (4.6)

The latter is described by the dotted lines in figure 5. The asymptotic functional forms
shown in (4.5) and (4.6) reveal that, to leading order in k̂, the growth rate of the Yih
mode is independent of the properties of the surfactant, that is, the presence of the
surfactant has a negligible effect on the behaviour of the corresponding normal mode.
On the other hand, the growth rate of the Marangoni mode is determined by the
surfactant diffusivity and is independent of the Marangoni number. The quadratic
dependence of the Marangoni growth rate on k̂ shown in (4.6) suggests that, unless
Ds = 0 and Ma < 1, this mode will decay faster than the Yih mode at sufficiently high
wavenumbers. Accordingly, the dashed lines in figure 5(a) must switch from the Yih
branch corresponding to (4.5) over to the Marangoni branch corresponding to (4.6)
at a certain value of β; the converse is expected for the solid lines. This transition is
confirmed in the amplified scale of figure 5(b) corresponding to β = 0.5. The heavy
broken line represents the growth rate of the Yih mode in the absence of surfactants,
and the dotted line represents the asymptotic prediction (4.6).

To confirm independently the existence of two normal modes with the
aforementioned properties, we used the boundary-element method discussed in the
Appendix to compute the evolution of a small-amplitude wave on the film surface.
Results of numerical simulations are displayed in figure 6 for the conditions described
in the caption. In this graph, the surface amplitude, a, reduced by the initial value,
a0, is plotted against the reduced time t ′ = tρgL/µ on a linear-log scale. The slopes of
the leftmost heavy solid curve and rightmost heavy dashed curve, corresponding to
the two normal modes, are in excellent agreement to the predictions of linear stability
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theory represented by the dotted lines, given by −0.24214 and −0.03108. At long
times, the intermediate solid curve, corresponding to an arbitrary (non-normal mode)
initial condition, tends to become a straight line with a slope that is equal to that of
the slower decaying normal mode.

The results of the linear stability analysis presented in this section are consistent
with our earlier findings in § 3 concerning the effect of surfactants in steady flow down
a wavy wall, as well as with the recent findings of Frenkel & Halpern (2002), Halpern
& Frenkel (2003), and Blyth & Pozrikidis (2003) concerning the surfactant-induced
instability of two-layer channel flow, as will be discussed in § 6.

4.2. Film on a horizontal wall

As the inclination angle tends to zero, the surface velocity vanishes, the scaling
underlying (4.1) fails, and the definitions of Ca, τ and ζ are no longer appropriate.
To study this limit, we replace (4.1) by

ψ (1)

Γ (1)

γ (1)


 =




γ0h

µ
φ(ŷ)

Γ0C

γ0D


 × exp[i(kx − σ t)], (4.7)

and express the function φ(ŷ) in the form

φ(ŷ) = a′
1e

k̂ŷ + a′
2ŷek̂ŷ + a′

3e
−k̂ŷ + a′

4ŷe−k̂ŷ , (4.8)

where a′
i , i = 1, . . . , 4, are four dimensionless coefficients. Requiring the satisfaction

of the wall and film surface conditions, we find a′
3 = −a′

1. The remaining complex
coefficients satisfy the homogeneous linear system N′ · z′ = 0, where z′ = [a′

1, a
′
2, a

′
4, D]T ,

the coefficient matrix is given by

N′ =




2k̂ 1 1 0

(1 − q)k̂ k̂ + 1 q(k̂ − 1) −i 1
2
e−k̂

ĉ′k̂2(1 + q) + iτ ′(1 − q) ĉ′k̂2 + iτ ′ q(−ĉ′k̂2 + iτ ′) 0

Ma k̂(1 + q) Ma(1 + k̂) Ma q(1 − k̂)
(
ĉ′ + ik̂

α′

)
e−k̂


 , (4.9)

ĉ′ ≡ cµ/γ0 is a dimensionless complex phase velocity,

τ ′ ≡ k̂2

8π2
(Bo + 4π2) = 1

2
(Bo′ + k̂2), (4.10)

Bo ≡ ρgL2/γ0 is the Bond number defined with respect to the wavelength, and
Bo′ ≡ ρgh2/γ0 is the Bond number defined with respect to the layer thickness. Setting
the determinant of N′ to zero provides us with a quadratic equation with two purely
imaginary roots for ĉ′, corresponding to negative growth rates s ′. In the limit as k̂

tends to infinity, the growth rate of the first mode behaves like s ′ � −k̂/2, and the
growth rate of the second mode behaves as s ′ � −k̂(k̂/α′ + Ma/2), in correspondence
with (4.5) and (4.6).

In the absence of surfactant, β = 0 or Ma = 0, the coefficient D becomes
indeterminate, and only the first three equations in (4.9) involving the dimensionless
group τ ′ are relevant to the dynamics. After some algebra, we find that the real part
of the phase velocity is zero, as expected by symmetry, and the dimensionless growth
rate is given by the second of (4.3) with s ′ in place of s and τ ′ in place of τ . This result
is consistent with a more general expression for the growth rate of the Stokes flow
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Figure 7. Dimensionless growth rate s ′ of surface waves on horizontal film resting on a plane
wall for Bo′ = 2, α′ = 100 and β = 0.001 (heavy solid and broken lines), 0.1, 0.2, . . . , 0.9,
corresponding to the graphs shown in figure 5(a).

instability of a liquid layer resting on a horizontal wall underneath a semi-infinite
fluid of arbitrary viscosity and density, derived by Newhouse & Pozrikidis (1990).

Figure 7 shows graphs of the dimensionless growth rate s ′ for Bo′ = 2, α′ = 100,
and β = 0.001 (heavy solid and broken lines), 0.1, 0.2, . . . , 0.9. The general structure
of the stability chart is similar to that displayed in figure 5(a), and the expected
asymptotic behaviour is borne out from the numerical computation.

5. Boundary-element solutions
To overcome the restrictions on the magnitude of the perturbations imposed by

linear theory, a numerical method was implemented for computing unsteady and
steady Stokes flow down a periodic wall with arbitrary geometry. In one imple-
mentation of the numerical method, the evolution of the film surface was computed
using the boundary-integral method outlined in the Appendix, while the convection–
diffusion equation for the surfactant concentration was integrated in time using an
implicit finite-volume method (Pozrikidis 1998). Simulations were carried out from
an arbitrary initial condition, typically involving a flat film surface and a uniform
surfactant concentration, until a steady state is established. In another implementation
of the numerical method, the equations of steady flow were solved directly using an
iterative method. Apart from being less sensitive to the initial condition, the first
method for unsteady flow has the added advantage of providing us with information
on stability, and was chosen in the majority of the numerical investigations. The
simulations showed that, when the initial amplitude of the film surface is sufficiently
small, the film tends to a stable steady state at long times under all conditions
considered.

5.1. Sinusoidal walls

The numerical results for small wall amplitudes are in good agreement with
the predictions of the linear perturbation analysis discussed in § 2. For example,
when Ca = 2, β =0.6, α = 100 and h/L = 0.10, linear analysis predicts |A| = 0.598
and −Arg(A) = −0.533π/2 for the film surface amplitude, and |C| =0.049 and
−Arg(C) = 1.417π/2 for the surfactant concentration amplitude. The boundary-
integral solution for wall amplitude ε = aw/h= 0.10 with Nw = 48 elements over one
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Figure 8. (a) Effect of surfactant on the film surface for θ0 = π/4, Ca = 2, α = 100, mean film
thickness h/L = 0.20, wall amplitude aw/L = 0.10 and β =0.0 (solid line), 0.2 (dotted line)
and 0.5 (dashed line) (b) Corresponding distribution of the tangential surface velocity and
surfactant concentration, represented by the heavy and light lines. (c, d) Streamline patterns
for β = 0 and 0.5.

period of the wall and Ns = 48 elements over one period of the film surface, yields
|A| = 0.560, −Arg(A) = −0.542π/2, |C| =0.051 and −Arg(C) = 1.358π/2. Considering
that the wall amplitude is 10% of the film thickness, we find good agreement with
the theoretical predictions.

Moreover, the qualitative effect of the surfactant is described well by linear theory
even for non-infinitesimal wall amplitudes. Surfactants amplify the deformation of
the film surface, and the effect is most pronounced in the range of film thicknesses
suggested by the perturbation analysis. As an example, we consider flow down a wavy
wall described by the equation yw = aw cos(kx), for θ0 = π/4, aw/L = 0.10, Ca = 2,
α = 100, and mean film thickness h/L = 0.20, where h ≡ A/L and A is the area of the
liquid inside each period. Figure 8(a) displays the surface profile ys shifted by h and
reduced by the wall amplitude aw , for β = 0.0, 0.20, and 0.50, and figure 8(b) shows
the corresponding distribution of the surfactant concentration (thin lines) and surface
velocity (heavy lines), the latter normalized by the Nusselt velocity Us corresponding
to a film thickness h − aw .

The distribution of the surfactant concentration can be estimated by recalling that
the perturbation in the surfactant concentration is roughly inversely proportional to
the tangential surface velocity, and this deduction is consistent with the graphs
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Figure 9. Film profiles for θ0 = π/4, Ca= 2, α = 100, β = 0.5, reduced mean film thickness
(h̄ − aw)/L = 0.10, and (a) aw/L = 0.01, (b) 0.10, (c) 0.20 and (d) 0.30. The circular symbols
mark the location of the wall and surface boundary element nodes.

displayed in figure 8(b). Conversely, we recall that the Marangoni traction is
proportional to −dΓ/dl, and this suggests that the presence of a surfactant acts
to, respectively, slow down or speed up the motion of the fluid over the crests or
troughs, and thereby render the tangential velocity uniform over the film surface.
Figure 8(c, d) shows streamlines originating from evenly spaced points across the film
over the crest, for β = 0 and 0.5, illustrating the significant effect of the surfactant on
the structure of the flow. Later in this section, we will see that the surfactant may in
fact cause the onset of regions of recirculating flow.

To illustrate the effect of the wall amplitude, in figure 9 we present film profiles for
θ0 = π/4, Ca =2, α = 100, β = 0.5, reduced mean film thickness (h − aw)/L = 0.10 and
several wall amplitudes aw/L. When aw/L is roughly greater than 0.05, the depth of
the corrugations has a small effect on the shape of the free surface. In contrast, the
distribution of the tangential velocity along the film surface, shown in figure 10(a),
is sensitive to the wall amplitude. In this graph, the tangential velocity has been
normalized by the Nusselt surface velocity of a film of thickness h. In particular, as
the wall amplitude is increased, the drop in the tangential velocity down the slope of
the corrugations is accentuated, and the position of minimum velocity shifts from a
point near the trough toward the downward inflection points. Figure 10(b), shows the
distribution of the surfactant concentration. The hardly visible dotted line represents
the prediction of the linear theory for aw/L = 0.01, which is in excellent agreement
with the results of the numerical computation. At higher wall amplitudes, linear
theory does not adequately capture the stronger effect of the corrugations.
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Figure 10. Surface distribution of (a) the tangential velocity, and (b) the surfactant
concentration, corresponding to the conditions of figure 9. The wall amplitude is aw/L = 0.01,
0.05, 0.10, 0.20 and 0.30 (dashed lines). The hardly visible dotted line in (b) represents the
prediction of the linear theory for aw/L = 0.01.

5.2. Circular cavities

The numerical method was applied to study film flow down an inclined wall with
periodic depressions of various shapes. Figure 11(a) depicts one period of the steady
surface shape for flow over a periodic sequence of semi-circular cavities with radius
R/L= 0.25, in the absence of surfactants. Because the capillary number is high,
Ca =20, surface tension is insignificant. The depicted profiles correspond to film
thickness h̃/L = 0.05, 0.10, 0.15 and 0.20, where h̃ is the thickness of the equivalent
film over the flat portion of the wall, having a perfectly flat surface and the same
area as the deformed film over each period of the wall. Figure 10(b) illustrates the
effect of a surfactant at a lower capillary number Ca = 2 where surface tension is
significant, for h̃/L =0.05, 0.10, 0.15 and 0.20. The solid lines correspond to a clean
interface or inactive surfactant, β = 0, and the dashed lines correspond to β = 0.50
and α = 100. The surfactant is seen to accentuate the deformation of the film surface
over the cavity, although the effect is small.

Figure 11(c) illustrates the distribution of the surfactant concentration for θ0 = π/4,
Ca = 2, β = 0.50, α =100, corresponding to figure 11(b), and several equivalent film
thicknesses. The corners of the cavity are located at x/L =0.25 and 0.75. Marangoni
tractions act to slow down the motion over the flat segments of the wall where dΓ/dl

is positive, and to speed up the motion above the cavity where dΓ/dl is negative. A
feature revealed in these graphs is that, as the film thickness increases, the amplitude
in the perturbation in the surfactant concentration increases, reaches a maximum, and
then decreases while obtaining a sinusoidal shape. This behaviour is consistent with
the earlier results of the linear analysis for a sinusoidal wall, displayed in figure 3(b).

Although the surfactant has a small influence on the film deformation, it may
nevertheless have a significant effect on the structure of the flow and on the streamline
pattern. Figure 11(d) shows the distribution of the tangential velocity at the surface
for θ0 = π/4, Ca = 2, α =100 and h̃/L = 0.10, reduced by the free-surface velocity Us

corresponding to h̃. The solid curve is for a clean interface, β = 0, and the dashed
line corresponds to β = 0.50 and α = 100; the associated surfactant concentration is
plotted with the square symbols in figure 11(c). The deceleration of the fluid over
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Figure 11. Flow over a periodic arrangement of semi-circular cavities of radius R/L= 0.25
for (a) Ca = 20 in the absence of surfactants, and (b) Ca = 2 and β = 0 (solid lines), or β = 0.5
α = 100 (dashed lines). In both cases (a) and (b), the mean film thickness is h̃/L = 0.05, 0.10, 0.15
and 0.20. (c) Surfactant distribution for Ca= 2, β = 0.5 and α = 100, and h̃/L = 0.05 (circles),
0.10 (squares), 0.15 (diamonds), 0.20 (crosses), 0.30 (up triangles), 0.40 (down triangles), 0.50
(stars). (d) Distribution of the tangential surface velocity for h̃/L = 0.10, Ca= 2 and β = 0
(solid line) or β =0.5 and α = 100 (dashed lines), and (e, f ) associated streamline pattern.

the flat segments of the wall and intervening deceleration over the cavity is directly
evident in this graph. As in the case of a sinusoidal wall, the surfactant renders the
tangential velocity more uniform over the surface. Figure 11(e, f ) shows the streamline
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pattern, demonstrating the strong effect of the surfactant on the structure of the flow.
In particular, the presence of the surfactant causes the onset of a nearly symmetric
region of recirculating flow attached to the bottom of the cavity. The potentially
important effect of flow reversal on the convective transport properties of the flow is
discussed by Higdon (1985).

6. Discussion
We have found that surfactants amplify the film deformation under a broad range

of conditions for small and large wall amplitudes and size of depressions, but the effect
is generally moderate or small. Previous authors have studied the effect of surfactants
on the deformation of a viscous drop suspended in simple shear flow, and found that
the presence of surfactants is significant only when the drop viscosity is roughly less
than one tenth the viscosity of the ambient liquid, the surfactant diffusivity is low and
the drop aspect ratio is roughly higher then 1.5 (e.g. Yon & Pozrikidis 1998). These
earlier findings are in qualitative and quantitative agreement with the present results
for film flow. In contrast, we have found that the presence of the surfactant may
have a profound impact on the distribution of the surface velocity and kinematics
of the flow. In particular, the surfactant tends to render the tangential velocity more
uniform over the film surface.

Frenkel & Halpern (2002), Halpern & Frenkel (2003) and Blyth & Pozrikidis (2003)
considered the effect of a surfactant on the stability of a two-layer channel flow by
linear stability analysis and numerical simulation. The results of these studies are
consistent with those reported in § 4 in that, when a surfactant is present, the flow
admits two normal modes, one of which is associated with the Marangoni traction.
In the case of channel flow, an important parameter determining stability is the
reduced shear stress of the base flow at the location of the unperturbed interface,
expressed by an appropriate interface capillary number. When this reduced shear
stress is zero, as in the present case of film flow, both normal modes are stable.
Frenkel and Halpern found that instability of the surfactant-induced mode occurs
when the interface capillary number is non-zero and the layer thickness and viscosity
ratios falls within certain regions of the parameter space. When instability occurs, the
Marangoni mode dominates the evolution.

Several previous authors considered the effect of surfactants on the stability of
film flow. Most relevant to the present topic is the linear analysis of Lin (1970)
who evaluated the critical Reynolds number for instability by carrying out a long
wavenumber expansion. Unfortunately, because only one normal mode appears to
survive in this limit, truncating the expansion to the second term is not sufficient for
assessing the neutral growth curves and growth rates. Other authors have assumed
that the surface concentration of a soluble surfactant is at equilibrium with the
bulk concentration in the liquid phase, and is thus determined by bulk diffusion,
evaporation and desorption (Ji & Setterwall 1994). Linear stability analysis under
these conditions has revealed the occurrence of a mode of instability related to
Marangoni tractions for low Reynolds numbers and moderate- or short-wavelength
perturbations. These findings are consistent with the results presented in § 4 for Stokes
flow. The agreement motivates the extension of the linear stability analysis for Stokes
flow to Navier–Stokes flow, and this will be the topic of future work.

This research was supported by a grant provided by the National Science
Foundation.
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Appendix. Boundary-element method
Consider the flow of a viscous film down a periodic wall that is inclined at an

angle θ0 with respect to the horizontal, as illustrated in figure 1. We assume that the
Reynolds number based on the film thickness is so small that the motion of the fluid
is governed by the equations of Stokes flow.

To develop the boundary-integral formulation, we decompose the velocity and
pressure into a basic component that satisfies the equations of Stokes flow with the
gravity term included, denoted by the superscript B , and a disturbance component
that satisfies the equations of unforced Stokes flow, denoted by the superscript D.
The basic component is identified with the flat-film Nusselt solution given in (3.6),
describing unidirectional flow. The no-slip and no-penetration boundary conditions
require that u = 0 or uD = −uB over the wall. The dynamic boundary condition (2.2)
requires

f D = − f B − (γ κ + pa)n − ∂γ

∂l
t (A 1)

over the film surface. Substituting (3.6) into (A 1), we obtain the explicit form

f D = ρg(h − y)

[
cos θ0 −sinθ0

−sinθ0 cos θ0

]
· n − (γ κ + pa)n − ∂γ

∂l
t. (A 2)

Further development depends on whether we consider steady or unsteady flow.

A.1. Unsteady flow

Applying the boundary-integral formulation for the disturbance flow, we obtain the
integral equation

1
2
uD

j (x0) = − 1

4πµ

∫
W,S

Gij (x, x0)f
D
i (x) dl(x)

+
1

4π

∫ PV

W,S

uD
i (x)Tijk(x, x0)nk(x) dl(x), (A 3)

where Gij is the periodic velocity Green’s function of two-dimensional Stokes flow
whose period is equal to that of the wall, Tijk is the associated stress tensor, PV

denotes the principal value of the double-layer potential, n is the unit normal vector
pointing into the film, W denotes one period of the wall, S denotes one period of the
film surface, and the point x0 lies on W or S. The Green’s function is available in
closed and readily computable form (Pozrikidis 1988, 1992). The unknowns in (A 3)
are the disturbance traction over the wall and the disturbance velocity along the film
surface.

Whether or not equation (A 3) has a unique solution depends on the way in which
the Green’s function is defined. In particular, the solution for the disturbance wall
traction will be unique only if the flow rate induced by the periodic array of point
forces pointing in the y-direction normal to the wall, underlying the definition of the
Green’s function, is non-zero. The satisfaction of this condition can be ensured by
adding an arbitrary constant to the transverse component Gyy .

To solve the integral equation, we discretize one period of the wall into Nw elements
and one period of the film surface into Ns elements, introduce approximations
for the unknown functions over the elements, and apply the integral equation at
element collocation points to obtain a linear system of algebraic equations (e.g.
Pozrikidis 2002). In the present implementation, the disturbance velocity and traction
are approximated with constant functions over the elements, and the collocation
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points are placed at the element mid-points to yield the linear system

AWW · f W + AWS · f S = BWW · uW + BWS · uS − 1
2
uW, (A 4)

for the wall collocation points, and the companion linear system

ASW · f W + ASS · f S = BSW · uW + BSS · uS − 1
2
uS, (A 5)

for the surface collocation points. The vector f W contains the x, followed by the
y components of the wall disturbance traction, and the vector uW contains the x,
followed by the y components of the disturbance wall velocity; similarly for f S and
uS . The union of the 2Nw scalar equations encapsulated in (A 4) and 2Ns scalar
equations encapsulated in (A 5) is arranged in a similar lexicographic fashion.

The influence matrices introduced in (A 4) and (A 5) are defined in terms of integrals
of the single- and double-layer potential over the boundary elements. The sizes of the
matrices AWW , AWS , ASW and ASS , are, respectively, 2Nw ×2Nw , 2Nw ×2Ns , 2Ns ×2Nw

and 2Ns × 2Ns; similarly for BWW , BWS , BSW and BSS . Moving the unknowns to the
left-hand side, we obtain the 2(Nw + Ns) × 2(Nw + Ns) block linear system

AWW −BWS

ASW −BSS +
1

2
I


 ·

[
f W

uS

]
=

[
BWW − 1

2
I −AWS

BSW −ASS

]
·
[

uW

f S

]
. (A 6)

In the present implementation, the film surface elements are straight segments, and
the wall elements are either straight segments or circular arcs. The film surface normal
vector and curvature are computed by cubic-spline interpolation from the position
of the surface nodes, and the solution of the linear system (A 6) is found by Gauss
elimination. Once the surface velocity is available, the position of the surface nodes is
integrated in time using the second-order Runge–Kutta method. A simulation takes
only several minutes of CPU time on an Intel 1.7 GHz processor running Linux.

To evaluate the velocity at a point x0 inside the film, we use the integral
representation

uj (x0) = uB
j (x0) − 1

4πµ

∫
W,S

Gij (x, x0)f
D
i (x) dl(x)

+
1

4π

∫
W,S

uD
i (x)Tijk(x, x0)nk(x) dl(x), (A 7)

whose discrete form is

u(x0) = uB(x0) − AW (x0) · f W − AS(x0) · f S + BW (x0) · uW + BS(x0) · uS, (A 8)

where AW and BW are single- and double-layer influence coefficients with dimensions
2 × 2Nw; similarly for AS and BS . Streamlines are generated by computing the
trajectories of particle paths using the modified Euler method based on the repre-
sentation (A 8).

A.2. Steady flow

To compute the steady flow directly, we decompose the surface velocity and traction
into tangential and normal components and write, for example, BSS · uS = BSS

n · uS
n +

BSS
n · uS

t , where the Ns-dimensional vectors uS
n and uS

t hold the normal and tangential
components of the surface element velocities, and the 2Ns × Ns matrices BSS

n and BSS
n

arise by contracting BSS using the normal and tangential vectors. Making this and
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similar substitutions into (A 6), we obtain the linear system

[
AWW −BWS

t AWS
n

ASW −BSS
t ASS

n

]
·




f W

uS
t

f S
n


 =

[
BWW − 1

2
I BWS

n −AWS
t

BSW BSS
n −ASS

t

]
·




uW

uS
n

f S
t


 , (A 9)

for the unknown vector on the left-hand side. The vector on the right-hand side
is evaluated making use of the prescribed boundary conditions on the disturbance
velocity and traction.

Because the wall and surface traction can be enhanced with an arbitrary multiple
of the normal vector, system (A 9) is singular and admits an infinite number of
solutions. Specifically, one of the components of f S

n may be an inconsequential
arbitrary value reflecting the unspecified level of the ambient pressure. In the present
implementation, the last component of f S

n corresponding to the last surface element,
denoted by (f S

n )Ns
, is set to zero, and the linear system is solved for the remaining

2(Nw + Ns) − 1 unknowns. If the flow is at steady state, the solution will satisfy the
boundary condition (A 1) and thus(

f S
n + f B

n + γ κ
)

i
−

(
f S

n + f B
N + γ κ

)
Ns

= 0, (A 10)

for i = 1, . . . , Ns − 1. These equations are used as objective functions to be made
equal to zero with respect to variations in the y position of the Ns − 1 surface nodes
labelled 2, . . . , Ns − 1, while the first surface node determining the film thickness or
flow rate is held constant. The associated nonlinear algebraic system was solved by
Newton’s method with the Jacobian calculated by numerical differentiation.
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